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Abstract

This appendix provides details about our dataset and estimation methodology, and

presents robustness tests. We also discuss connections between EP (x) and the pricing

kernel, and between EP (x) and the term structure of equity risk premia. Lastly, we

detail the approach for computing EP (x) in equilibrium models.
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A Data description and estimation details

This section shows summary statistics for the options data and presents goodness

of fit statistics for the interpolant used to estimate risk-neutral densities.

The 1990-2019 CBOE dataset contains 18.4 million end-of-day quotes. Our

estimation of risk-neutral densities is based on 4.7 million quotes that remain after

excluding in-the-money and long-dated options, and applying the filters described

in the paper. To illustrate how quote availability evolved over time, we plot the

median number of daily quotes for each calendar year in the top panel of Figure 1.

The number of available contracts (after filters) increased steadily from 44 per day

in 1990 to 3,297 per day in 2019.

Precise estimates of risk-neutral densities rely crucially on quotes that span a

wide strike region. The middle panel of Figure 1 reports the minimum and maxi-

mum observed strike K by calendar year, expressed in standardized moneyness units

as log(K/Ft)
V IXt/100×

√
τ
. To focus on typical values, we record the minimum and maximum

observed strike for each trading day and then plot the median values across days

for each year. The observed strike range is represented by the shaded region. In

the early part of the sample, observed quotes typically extended from 2.5 standard

deviations below the money to 1 standard deviation above the money. This money-

ness range extended considerably towards the end of the sample, where it typically

spanned [-8,2] standard deviations. To put these numbers into perspective, we also

show the 1st and 99th percentiles of the estimated risk-neutral 30-day return dis-

tribution in the same standardized moneyness units. The plot shows that, while

observed quotes typically need to be extrapolated beyond the observed strike range

in the early sample, available quotes span the vast majority of the density’s support

from 1998 onwards.

As explained in the paper, we estimate risk-neutral densities by mapping price

quotes to implied volatility units, fitting an interpolant to them, mapping interpo-

lated implied volatilities back to prices, and finally differentiating option prices via
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Figure 1: Summary statistics

finite differences. For an accurate representation of the options data, it is important

that the interpolant provides a good fit to observed implied volatilities. We assess

the fit via the R2 it implies. The bottom panel of Figure 1 shows the median R2

across trading days in each calendar year. The SVI interpolant fits implied volatil-

ities very well, with typical R2 above 94% for all years and well above 99% from

1998 onwards. The mean (median) R2 across all days equals 98.8% (99.6%).

To illustrate the interpolant’s fit more directly, we plot it for 3 select days in

Figure 2. The left column shows the first day of the sample (1990/01/02), the middle

column the day of Lehman Brothers’ default (2008/09/15), and the right column

the last day of the sample (2019/12/31). In terms of fit and quote availability, these
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days are fairly representative of typical days in the early, middle, and late part of

the sample, respectively. Recall from the paper that our SVI interpolant fits implied

volatilities across all strikes and maturities simultaneously. For illustration purposes,

Figure 2 focuses on the observed maturities closest to 1, 2, and 3 months for each

day. In line with Figure 1, we see that (i) the interpolant provides an excellent fit to

observed option prices for all 3 days and all 3 maturities and (ii) extrapolation only

plays an important role for the early part of the sample. Importantly, the figure

illustrates that the SVI method provides a very sensible way to extrapolate implied

volatilities, especially in the left tail that matters most for our main result.1

To ensure that our findings are not unduely affected by the pre-1998 sample,

which coincides with fewer observed strikes, a somewhat lower R2, and the need to

extrapolate more frequently, we next illustrate them for different subsamples.

B Robustness check 1: Subsamples

First, we compute EP (x) based on post-1997 data to investigate whether our results

are robust to the exclusion of lower quality data from the early sample. The dotted

line in Figure 3 shows that the post-1997 EP (x) curve attributes the entire equity

premium to returns below -10%, and over 8/10 to the interval [−30%,−10%]. Our

main finding – the large importance of intermediate left tail events for the equity

premium – is therefore even stronger post-1997.

A second potential concern about our sample is that it is not representative

of the population distribution of economic states. For example, recessions may be

under- or over-represented relative to their ergodic frequency. To the extent that the

importance of left tail states changes in recessions, the EP (x) curve in our sample

could be a biased estimate of the corresponding population curve. A similar concern

was recently raised Bansal et al. (2020) about estimates of the term structure of

1To enable readers to retrace our calculations, we include data for these 3 days in our replication

code package.
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Figure 3: Equity premium decomposition for different subsamples.

the equity premium, which, like our estimates, are most commonly derived from

derivative data with short historical samples. The dashed line in Figure 3 shows

EP (x) for the part of our sample that excludes the NBER recessions priods 1990/07-

1991/03, 2001/03-2001/11, and 2007/12-2009/06. In this subsample, returns below

-10% account for 63/100 of the equity premium, whereas returns in the interval

[−30%,−10%] account for 56/100. As intuition suggests, tail states therefore indeed

play a more prominent role for risk premia during recessions. The difference is slight,

however, and intermediate left tail events continue to account for over half of the

equity premium even outside of recessions. We return to the model of Bansal et al.

(2020) in section G of this supplement, where we evaluate its implications for EP (x).
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Figure 4: EP (x) for quarterly returns

C Robustness check 2: Longer return horizons

The paper focuses on a return horizon of one month. To understand the economic

mechanism of existing models, and to relate our results to literature on the term

structure of asset prices, it is similarly useful to decompose the equity premium for

longer horizons. The fact that option prices and returns can only be observed jointly

for 30 years, however, makes it difficult to compute the necessary estimate of the

physical return distribution with reasonable precision at very long horizons.

With this caveat in mind, we examine the importance of different return states at

horizons of a few months. Figure 4 replicates our main analysis at the quarterly (90

calendar day) horizon. To account for the larger volatility of quarterly returns, we

scale the left tail region of interest by a factor of
√
3. In the data, quarterly returns in

the interval
√
3× [−30%,−10%] account for 50.4/100 of the equity premium, while

they account for 10.3/100 or less in the four depicted models. At the quarterly

horizon, the models therefore perform similarly poorly in capturing sources of the

equity premium. The habit and long-run risks models continue to attribute risk

premia to less extreme and the disaster model to more extreme left tail states than

the data. Of course, it is possible (but hard to evaluate) that the models align

more closely with the data at very long horizons. Because long horizons make it

challenging to distinguish disasters (jumps) from large Gaussian shocks, however,
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Figure 5: The importance of left tail events at different return horizons

they are less informative about economic mechanisms.

Figure 5 provides a closer look at the term structure dimension by plotting the

equity premium contribution (left panel) and price of risk (right panel) for returns

in
√
h× [−30%,−10%] as a function of the return horizon, h. The left panel shows

that, in the data, left tail events contribute slightly less to the equity premium at

longer horizons. In contrast, they contribute equally much (habits and long-run

risks) or more (disasters) in the models. The figure suggests that the gap between

models and data remains significant for horizons well beyond three months.

The right panel shows that the ratio of average risk-neutral to physical probabili-

ties – our measure of risk prices – increases at longer horizons in the data. While the

models capture this increasing pattern, they continue to substantially undershoot

the magnitude of risk prices at longer horizons. The horizon over which tail events

are measured therefore does not appear to be essential for our finding.
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D Robustness check 3: International evidence

We repeat the empirical analysis for the British FTSE 100 and German DAX to

investigate whether our findings continue to hold internationally. Options data

for both indices was purchased from Refinitiv, a subsidiary of the London Stock

Exchange Group. Refinitiv’s “Tick History Data” spans 2003-2019 and contains

intra-daily option quotes and trades, from which we extract end-of-day prices to

mimic the analysis for the S&P 500. As for the S&P 500, we rely on end-of-day

midquotes for the DAX. Because quotes are very sparse for the first few years of

the FTSE sample, however, we instead rely on closing prices. The end-of-day FTSE

data consists of 5.1 million (0.72 million) observations before (after) filters, while

the DAX data contains 4.1 million (0.91 million) observations. For the FTSE, the

median number of daily observations after filters increased from 152 in 2003 to 265

in 2019, while it increased from 83 in 2003 to 280 in 2019 for the DAX.

As for the S&P 500, we use LIBOR rates for the corresponding market to map

option prices back and forth between British Pound (or Euro) and IV units, and we

interpolate implied volatilities across the moneyness-maturity spectrum based on the

SVI method. Moneyness is measured in standard deviation units as κ ≡ log(K/Ft,τ )
Vt/100×

√
τ
,

where Vt is the VIX-equivalent for the British (VFTSE index) and German (VDAX

index) market, respectively. The observed moneyness range for both indices is rel-

atively constant across years and extends from about -7 to +2 standard deviations

for the FTSE and from -7 to +2.5 standard deviations for the DAX. Similar to what

Figure 1 shows for the S&P 500 over 2003-2019, these ranges cover the vast major-

ity of the estimated risk-neutral return distributions’ support in each calendar year.

The mean (median) R2 of the SVI fit to implied volatilities equals 0.987 (0.992)

across all days in the sample for the FTSE, and 0.967 (0.986) for the DAX.

Figure 6 shows EP (x) curves for both markets and compares them to the U.S.

curve for the equivalent sample period. Returns in [−30%,−10%] contribute some-

what less to the equity premium over 2003-2019 for the S&P 500 and DAX, likely

10
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Figure 6: EP (x) over 2003-2019 in international and U.S. data

because this subsample excludes one of the two large recessions in our sample. In

contrast, the British market attributes 72/100 of the equity premium to such states.

The likely reason for this difference is that fact that BREXIT created large uncer-

tainty in the U.K. and, while not resulting in a recession, was associated with large

insurance premia on protective put positions.

The international evidence shows that, in each of the markets we examine, the

majority of the equity premium is attributable to shocks that coincide with market

returns between -30% and -10%. In itself, this observation does not reveal the type

of fundamental shocks that command large risk premia. The fact that the three

countries have highly correlated stock markets2, however, suggests that the equity

premium reflects compensation for shocks that are common across countries.

230-day returns on the British and U.S. indices have a correlation of 0.834 over our sample

period, while the German and U.S. indices have a correlation of 0.814. Similarly, the VIX has a

correlation of 0.952 with its British equivalent and a correlation of 0.871 with its German equivalent.
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Figure 7: EP (x) estimates for alternative sampling schemes

E Robustness check 4: Monthly sampling

Our main analysis is based on a daily sample of overlapping 30 calendar day returns

and corresponding estimates of the conditional risk-neutral distribution, f∗
t . The

main reason for sampling daily is that it allows us to obtain a more precise estimate

of the unconditional return distribution f than would be the case with monthly

sampling. A disadvantage of daily sampling is that it induces autocorrelation into

our estimates of f∗
t , both due to the overlapping nature of the data and poten-

tially due to stale option price quotes. As a result, statistical inference requires a

block bootstrap. In the following, we illustrate that our main result based on daily

sampling (sampling scheme “a”) is robust to two alternative sampling schemes:

b f∗ equals the average of end-of-month estimates of the conditional 30-day

risk-neutral density f∗
t , and f is estimated as in the main text.

c f∗ equals the average of end-of-month estimates of the conditional 30-day risk-

neutral density f∗
t , and f equals the empirical distribution of 30-day returns,

sampled at the end of every calendar month.

Figure 7 compares estimates of EP (x) across the three sampling schemes. The

estimate under sampling scheme “b” is nearly identical to the benchmark case, with

returns in the interval [−30%,−10%] contributing 65/100 to the equity premium

12



(compared to 67/100 in the benchmark). In contrast, sampling scheme “c” results

in a much noisier estimate of EP (x) because f is estimated based on just 360

monthly returns, as opposed to > 7, 000 returns under sampling scheme ”a”. Sam-

pling scheme “c” implies that R ∈ [−30%,−10%] contribute 77/100 to the equity

premium, i.e., ten percentage points more than the benchmark estimates based on

daily sampling. The estimates we report in the paper should therefore be considered

conservative.
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F Relating EP (x) to the pricing kernel

Asset pricing theories are commonly characterized in terms of a pricing kernel.

Projected onto returns, the pricing kernel equals

Et[Mt+1|Rt+1] = Et[Mt+1]
f∗
t (Rt+1)

ft(Rt+1)
, (1)

i.e. it reflects the ratio of (conditional) risk-neutral to physical return probabilities.

Unfortunately, Et[Mt+1|Rt+1] is challenging to use for state-by-state comparisons

between models and data because ft(Rt+1) is difficult to measure empirically. An

important insight of our paper is that state-by-state comparisons are possible based

on unconditional probabilities, which are straightforward to estimate. In particular,

we quantify risk prices based on the ratio of average risk-neutral (f∗(R) = E[f∗
t (R)])

and physical (f(R) = E[ft(R)]) probabilities.

To make our metric easier to relate to existing work, we compare it to the

average pricing kernel implied by different models. In IID models such as Barro

(2009), conditional distributions do not vary and f∗(R)/f(R) is exactly equal to

Et[Mt+1|Rt+1]/Et[Mt+1]. In that case, our metric corresponds to the traditional

metric for the price of risk. In non-IID models, f∗(R)/f(R) = E[f∗
t (R)]/E[ft(R)]

generally differs from E[f∗
t (R)/ft(R)] and hence from the average pricing kernel

E [Et[Mt+1|Rt+1]/Et[Mt+1]]. Figure 8 compares both metrics for the four asset pric-

ing models in Figure 1 of the paper, and shows that they imply a very similar

values. Our finding that f∗(R)/f(R) is counterfactually low for left tail returns in

the models therefore appears directly related to the shape of the (projected) pricing

kernel they imply. Note that the model-based price of risk in figure 8 can be directly

compared to the empirical f∗(R)-to-f(R) probability ratio in figure II in the paper,

which is considerably steeper in the left tail.
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Figure 8: Alternative measures of the price of risk.



G Relating EP (x) to the term structure of the equity

premium

van Binsbergen et al. (2012) extract prices of dividend strips with different matu-

rities from index options, and show that claims to near-term dividends have higher

average returns and Sharpe ratios. In contrast, they find that habit and long-run

risks models imply an upward-sloping term structure of dividend risk premia. Our

analysis resembles theirs in that we use options data to characterize properties of

the equity premium. It is therefore interesting to ask whether the two findings are

related. We do so in two ways.

First, we implement EP (x) for two modified long-run risks models that were

explicitly designed to address the term structure finding. Belo et al. (2015) show

that the downward-sloping term structure can be explained by a modified dividend

process that respects stationary financial leverage ratios. Intuitively, capital struc-

ture rebalancing shifts risk from long- to short-horizon dividend strips by forcing

shareholders to divest (invest) when leverage is low (high).3 Bansal et al. (2020) ar-

gue that the downward-sloping term structure reflects an oversampling of recessions

in van Binsbergen et al.’s sample. Their regime-switching long-run risks model re-

produces a negative slope in small samples that overweight recessions as in the data,

but implies a positive slope unconditionally. Following Bansal et al.’s argument, we

compute EP (x) based on a simulation of their model’s state that reflects an (over-

sampled) recession frequency of 8%.4 We find that the two modified long-run risks

models closely resemble the model of Bansal and Yaron (2004) in their implications

3Belo et al. (2015) rely on Bansal et al.’s (2012) calibration of the long-run risks model.

We follow their log-linear solution approach and compute ex-dividend returns as Rex
t+1 =

ezy,t+1−zy,t+∆yt+1

(
1−e

lt+1

1−elt

)
, which follows from the price-dividend ratio, exp(zd,t) = exp(zy,t +

yt − dt)(1− exp(lt)), in the model. Option prices are computed via Monte Carlo simulation.
4We follow the paper’s log-linear solution approach and are able to reproduce the moments

reported in section C.10. Option prices and the conditional return distribution ft can be computed

analytically based on standard results for normal random variables.
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for EP (x). Returns between -30% and -10% contribute 0.093 and 0.080 to the eq-

uity premium, respectively (versus 0.095 in the original model), they occur with a

probability of 0.011 and 0.013 (versus 0.013 in the original model), and feature of

price of risk of 1.237 and 1.174 (versus 1.280 in the original model).

Second, to understand the conceptual difference between our finding and that of

van Binsbergen et al. (2012), it is helpful to write the market return as a weighted

average of the returns on individual dividend strips, i.e.5

Rcum
t+1 =

∞∑
n=1

wt,nRt+1,n, (2)

where wt,n is the price of a divided strip with maturity n divided by the index level,

Rt+1,n is the spot return on that strip, and
∑∞

n=1wt,n = 1. van Binsbergen et al.’s

finding implies that transient shocks (which only affect near-term dividends) com-

mand larger risk premia than persistent shocks (which affect dividends far into the

future). Market returns reflect both transient and persistent shocks. In order for

the market to drop by 10% or more, however, shocks have to be fairly persistent.

To see this, note that the first 2 years of dividends contribute only about 3-4% to

the total index value.6 Even if the value of such dividends would fall to zero (a

return of -100%), the market would only fall by 3-4%. The market returns we show

to contribute the bulk of the equity premium, which fall between -30% and -10%,

therefore likely reflect shocks that affect dividends over considerably longer horizons.

Both theoretical results from existing models and conceptual considerations there-

fore suggest that EP (x) reflects different economic forces than the term structure

of risk premia.

5See Appendix A of van Binsbergen and Koijen (2017) for a derivation.
6See figure 2 in van Binsbergen et al. (2012).
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H Bootstrap for EP (x)

We detail the block bootstrap used to compute the empirical sampling distribution

for EP (x) in Figure III of the main text. Our empirical sample consists of joint

observations for {Rt:t+30, f
∗
t (Rt:t+30)}, t = 1, ..., T , where f∗

t (Rt:t+30) is the condi-

tional risk-neutral PDF of a 30 calendar day return at time t, and Rt:t+30 is the

realized return over the subsequent 30 calendar days. Using this sample, EP (x) is

computed as

EP (x) =

1
T

∑T
t=1Rt:t+301{Rt:t+30 ≤ x} −

∫ x
−1R

[
1
T

∑T
t=1 f

∗
t (R)

]
dR

1
T

∑T
t=1Rt:t+30 −

∫∞
−1R

[
1
T

∑T
t=1 f

∗
t (R)

]
dR

.

To compute the joint sampling distribution of EP (−30%) and EP (−10%)−EP (−30%),

we use a block bootstrap with 10 million bootstrap samples and a block length of 21

trading days (the average number of trading days over periods of 30 calendar days).

Specifically, the jth pair {EP (−30%), EP (−10%)} is created as follows.

1. Randomly draw an integer i between 1 and T − 20.

2. Add observations i, ..., i+ 20 to the bootstrap sample.

3. Repeat steps 1 and 2 until the bootstrap sample contains at least T observa-

tions. In practice, there will be slightly more than T observations if T/21 does

not equal an integer.

4. Use the bootstrap sample created in steps 1 through 3 to compute EP (−30%)

and EP (−10%) based on the above formula for EP (x).

The sampling distribution is created by repeating steps 1 through 4 ten million

times.

18



I Model Solutions

This section discusses our solution approach for each model and points out which

results from the original studies were replicated for validation. The calculation of

EP (x) relies on option prices, which, among the papers we consider, only Backus

et al. (2011) and Schreindorfer (2020) solve for. We therefore derive our own solu-

tions for the remaining models. Matlab programs are provided in our replication

code package.

Regardless of the model, we can write the put-to-spot price ratio for a strike

price K and a 1-period maturity as

P(X, ξt) =
1

St
Et [M(∆ct+1, ξt, ξt+1)max {0,K − St+1}]

=Et

[
M(∆ct+1, ξt, ξt+1)

(
X − PD(ξt+1)

PD(ξt)
e∆dt+1

)
1
∆dt+1≤log

(
X PD(ξt)

PD(ξt+1)

)] ,
(3)

where X = K/St equals moneyness, the pricing kernel M is a function of log con-

sumption growth ∆ct+1, today’s state ξt, and tomorrow’s state ξt+1, and the price-

dividend ratio PD is a function of the contemporaneous state. In what follows, we

detail how the expectation on the RHS of (3) is evaluated in each model, and we

defer details on the calculation of EP (x) to Section J. Throughout, we rely on the

same notation as the original studies and refer interested readers there for definitions

and additional details.

I.1 Campbell and Cochrane (1999)

The external habits model does not admit analytical solutions. Wachter (2005)

shows that the numerical solution in the original study is inaccurate and proposes

the “series method” as a more precise alternative. We follow her solution approach.

Specifically, the model is solved on a grid of 1001 unequally-spaced points for the

model’s state St+1 (the surplus consumption ratio) – “Grid 3” in Wachter (2005).

We employ Gauss-Chebyshev quadrature with 500 points covering ±7 standard
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deviations when computing expectations. Cubic splines are used to interpolate the

price-dividend ratio to off-grid values resulting from the quadrature. Our results

closely match Table 2 in Wachter (2005).

The Campbell-Cochrane model features a single shock to each consumption and

dividend growth, but no separate shock to the state. We evaluate the expectation

in (3) in two steps. First, we condition on ∆ct+1 and evaluate the expectation

over ∆dt+1 based on standard results for truncated normal random variables, which

yields7

P(X, ξt) = Et

[
M(∆ct+1, ξt)

(
XΦ (ν(∆ct+1, ξt))

− eE[∆dt+1|∆ct+1]+σ[∆dt+1|∆ct+1]2/2PD(∆ct+1, ξt)

PD(ξt)
Φ (ν(∆ct+1, ξt)− σ[∆dt+1|∆ct+1])

)]
where

� The functional form for the pricing kernel M is shown in Equation 5 of Camp-

bell and Cochrane (1999)

� ν(∆ct+1, ξt) =
log

(
X PD(ξt)

PD(∆ct+1,ξt)

)
−E[∆dt+1|∆ct+1]

σ[∆dt+1|∆ct+1]

� E[∆dt+1|∆ct+1] = g + ρσwvt+1

� σ[∆dt+1|∆ct+1] =
√

1− ρ2σw

and Φ(·) denotes the CDF of a standard normal. The remaining expectation over

∆ct+1 is evaluated based on the aforementioned quadrature method.

I.2 Bekaert and Engstrom (2017)

To solve the habit model of Bekaert and Engstrom (2017), we closely follow the

replication code on the publisher’s website,

https://doi.org/10.1086/691450

7The relevant results for truncated normals are summarized by Lemma 1 in Schreindorfer (2020).
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The model features two shocks from a gamma distribution that affect both consump-

tion and dividend growth, but no separate shock to the model’s state. We use a grid

of 101 equally-spaced points for nt (the time-varying shape parameter of the first

gamma shock) and 100 equally-spaced points for st (the log surplus consumption

ratio), both for the model solution and to compute option prices. Expectation in

(3) are evaluated via Monte Carlo integration, using 5× 108 draws and an identical

seed for each grid value of the model’s bivariate state.

I.3 Bansal and Yaron (2004)

We solve the long-run risks model numerically rather than relying on the log-linear

approximation in the original paper. The model’s bivariate state ξt = [xt, σ
2
t ] is

discretized with grids of size Nx = 200 and Nσ = 100, respectively. The grids

are linearly-spaced, centered around the unconditional mean of each process, and

extend 5 standard deviations in each direction. For this purpose, we set the standard

deviation of the conditional mean process to the one implied by the largest grid

value for volatility. We use Gauss-Chebyshev quadrature with 50 nodes covering ±7

standard deviations for shocks to the conditional mean and variance processes when

computing expectations. We solve for the value-consumption and price-dividend

ratios by iterating on the the Euler equations for both ratios until convergence, using

bivariate cubic splines to interpolate to off-grid values when necessary. Our solution

replicates Table 2 in Beeler and Campbell (2012), who provide an examination of

long-run risk models and show more moments that the original paper.

The model features four IID normal shocks, one to consumption growth, one

to dividend growth, and one to each of the model’s two states. We apply stan-

dard results for truncated normal random variables to integrate over the shocks to

consumption and dividend growth, which yields

P(X, ξt) = Et

[
M1(ξt, ξt+1)XΦ (ν(ξt, ξt+1))−M2(ξt, ξt+1)

PD(ξt+1)

PD(ξt)
Φ (ν(ξt, ξt+1)− φdσt)

]
where, based on the Hansen et al. (2008) formulation of the Epstein and Zin (1989)
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pricing kernel with V C being the utility-consumption ratio and R its certainty

equivalent,

� ν(ξt, ξt+1) =
log

(
X PD(ξt)

PD(ξt+1)

)
−µ−ϕxt

φdσt

� M1(ξt, ξt+1) = β
(
V C(ξt+1)
R(ξt)

) 1

ψ
−γ

e−γµ−γxt+γ2σ2/2

� M2(ξt, ξt+1) = β
(
V C(ξt+1)
R(ξt)

) 1

ψ
−γ

e(1−γ)µ+(ϕ−γ)xt+(γ2+φ2
d)σ

2/2

and Φ(·) denotes the CDF of a standard normal. The remaining expectation over

shocks to the model’s future state is evaluated based on the aforementioned quadra-

ture method.

I.4 Drechsler and Yaron (2011)

Drechsler and Yaron (2011) solve their model analytically based on the Campbell-

Shiller log-linearization. While Pohl et al. (2018) do not explicitly solve the Drechsler-

Yaron model, they show that log-linearization induces large numerical errors in many

similar long-run risks models. Because we would like to ensure that our results are

economically meaningful, we rely on a global, numerical, non-linear solution ap-

proach instead.

The model’s state is 3-dimensional. Both the utility-consumption ratio V/C and

price-dividend ratio P/D are solved on a grid with 20 equally-spaced points for xt

between -0.012 and 0.01, 20 equally-spaced points for σ̄t between 1e-16 and 4, and

30 equally-spaced points for σt between 1e-16 and 35. The endpoints are chosen

to ensure that the grids contain the vast majority of the models’ state. The model

features 9 IID shocks: 5 normal shocks, two Poisson shocks, and 2 exponential

shocks. To evaluate expectations, we analytically integrate over Gaussian shocks to

consumption and dividend growth and Poisson shocks to the model’s state, rely on

Gaussian quadrature for normal shocks to the model’s state, and on Gauss-Laguerre

quadrature for exponential shocks to the model’s state. The quadrature routine uses

5 nodes in each dimension. Cubic splines are used to interpolate V/C and P/D to
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Table 1: Drechsler and Yaron (2011) – Asset prices for two solution approaches

Log-linear Global

5 50 95 5 50 95

E[rm] 3.94 6.92 10.08 3.43 6.42 9.57

σ[rm] 14.50 17.44 22.09 14.02 16.83 21.00

skew[rm] -0.79 0.03 0.89 -0.76 0.03 0.87

skew[rm](M) -1.26 -0.42 0.08 -1.06 -0.34 0.12

AC1[rm] -0.26 -0.06 0.14 -0.09 -0.01 0.06

E[rf ] 0.23 0.94 1.43 0.28 0.98 1.48

σ[rf ] 0.83 1.49 2.71 0.83 1.47 2.65

skew[rf ] -4.43 -2.30 -0.93 -4.38 -2.26 -0.91

AC1[rf ] 0.23 0.47 0.68 0.23 0.47 0.68

E[p− d] 2.92 3.01 3.08 3.02 3.11 3.18

σ[p− d] 0.13 0.17 0.22 0.12 0.16 0.22

skew[p− d] 0.34 0.56 0.73 0.31 0.55 0.73

AC1[p− d] -1.23 -0.30 0.42 -1.48 -0.46 0.24

This table shows percentiles 5, 50, and 95 across 10,000 finite sample simulations of length 73 years

for each indicated statistic. Results are shown both for the log-linearized approximate solution from

the original paper and for a numerical, global, non-linear solution. All moments are time-aggregated

to an annual frequency, expect when labeled M (monthly).

any resulting off-grid values that result from the quadrature. In the model, the

probability of jumps is a function of σt. Our algorithm truncates the number of

jumps at the largest (state-specific) value whose probability exceeds 1 basis point

when evaluating expectations. As such, no jumps are allowed at the lowest grid

value of σt (where the jump intensity is very low), but up to 11 jumps are allowed

at the highest grid value (where the jump intensity is very high). This aspect is a

crucial feature of the numerical solution: results change significantly when jumps

are truncated too aggressively. Both V/C and P/D are initialized at the log-linear

solution from the original paper, and we iterate on the Euler equations of both

functions until their absolute change falls below 10−6 for all grid values.

To compare results from our non-linear solution to those from the log-linear

approximation, we simulate 10,000 samples of 77 years (the length of Drechsler
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and Yaron’s sample) and compute finite sample moments of time-aggregated data.

To ensure comparability, we use the same seed for the simulation of both solution

approaches. As Table 1 shows, results for basic asset prices are fairly similar across

both solution approaches. Log-linearization therefore results in much smaller errors

than in the long-run risks models considered by Pohl et al. (2018). We nevertheless

base all of our results for the model on the global solution approach.

To compute option prices, we evaluate the expectation in (3) via Monte Carlo

integration, using 5 × 108 draws and an identical seed for each grid value of the

model’s trivariate state.

I.5 Barro (2009)

The rare disaster model is cast in discrete time, but Barro (2009) solves it based

on continuous time approximations. Because such approximations are not available

for option prices, we instead rely on exact, analytical, discrete time solutions for the

price-consumption ratio and risk-free rate. We find, however, that these solutions

differ only marginally from the values implied by the approximations in Equations

5, 7, and 12 of the original paper.

Barro (2009) provides only a back-of-the-envelope calculation for the (levered)

equity premium, i.e. he does not formally define a dividend process. Because we

require the price of an equity claim in order to price equity index options, we follow

Abel (1999) in defining dividends as Dt = Cϕ
t , where ϕ captures leverage. We set

leverage to a value of 2.6, the same number used by Wachter (2013). All of our

results for the Barro model are based on this equity claim.

The model relies on a mixture of Gaussian shocks and disasters, where disaster

sizes are drawn from the empirical distribution of international disaster occurrences.

We follow Barro (2009) in assuming that the probability of multiple disasters in a

short time period (in our case, a month) is negligible. To compute option prices,

we condition on the disaster realization, evaluate expectations over Gaussian shocks
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analytically, and then average over disasters based on their empirical distribution:

P(X, ξt) =

(1− p)
(
Xe−γg+γ2σ2/2Φ (ν + γσ)− e(ϕ−γ)g+(ϕ−γ)2σ2/2Φ (ν − (ϕ− γ)σ)

)
+

p

N

N∑
i=1

(
Xe−γ(g+Zi)+γ2σ2/2Φ

(
ν − Zi

σ
+ γσ

)
− e(ϕ−γ)(g+Zi)+(ϕ−γ)2σ2/2Φ

(
ν − Zi

σ
− (ϕ− γ)σ

))
where

� ν = log(X)/ϕ−g
σ

� N denotes the number of empirical disaster realizations

� Zi is the log consumption drop observed during disaster i

and Φ(·) denotes the CDF of a standard normal.

I.6 Wachter (2013)

We solve a discrete time version of Wachter (2013) in order to simplify the calculation

of option prices. Log consumption growth ∆c and the disaster probability λ follow

∆ct+1 = µ dt+ σ
√
dtεct+1 + Zt+1νt+1

λt+1 = λt + κ(λ̄− λt)dt+ σl
√
dt
√

λtε
l
t+1,

(4)

where εct , ε
l
t ∼ N(0, 1), Nt ∼Berloulli(λtdt), and the disaster size Zt is drawn from

the empirical disaster size distribution.8 All shocks are IID. The discretization as-

sumes that either zero or one disaster occurs every period, with a disaster probability

of λtdt per period. Dividend growth is given by ∆dt = ϕ×∆ct, and the agent has

Epstein and Zin (1991) utility.

The calibration is identical to that in Wachter (2013). We solve the model at a

monthly frequency (dt = 1/12), using an equally-spaced grid for λt with 500 points

8The distribution of 1− eZt is shown in Panel A of Figure 7 in Wachter (2013). We rely on the

same data.
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Figure 9: Replication of Wachter (2013). We replicate figures 1 through 6 from Wachter

(2013) for the original continuous time model, and compare it to our discrete time version of the

model.

between 1e-16 and 1. Expectations over εct+1, Zt+1, and Nt+1 are evaluated analyt-

ically, while expectations over εlt+1 are evaluated via Gauss-Chebyshev quadrature

with 500 points between ±7 standard deviations. We solve the value-consumption

ratio and the price-dividend ratio by iterating on the system until convergence. Both

ratios are interpolated with cubic splines to any off-grid values of λt+1 that result

from the quadrature. Figure 9 replicates figures 1 through 6 from Wachter (2013),

and compares them to the results from our discrete time version of the model. The

plots show that the discretized model provides a good approximation to its contin-

uous time counterpart.

The calculation of option prices is similar to the one for Barro (2009). We condi-

tion on the disaster size realization, evaluate integrals over εct+1 and νt+1 analytically,

integrals over εlt+1 with the aforementioned quadrature method, and finally evaluate
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expectations over disaster realizations based on their empirical distribution.

I.7 Backus et al. (2011)

Backus et al. (2011) present alternative calibrations of the rare disaster model in

Barro (2006). We rely on their preferred “small jump” calibration (calibration 4

in their Table II), which is designed to match observed option prices. The model

admits analytical solutions for all asset prices, including options. We verified that

our solution replicates the equity premium reported in the original study.

I.8 He and Krishnamurthy (2013)

He and Krishnamurthy (2013) propose financial intermediary constraints as a source

of risk premia in asset markets. Their study focuses on mortgage-backed securities as

an example of an intermediated asset, but the same mechanism has been considered

to explain the equity premium in subsequent work (see, e.g. Muir (2017)). In

order to apply the He-Krishnamurthy model to the equity market, we re-calibrate

the dividend volatility to σ = 15%, the time discount rate to ρ = 0.16, and the

specialist’s relative risk aversion to γ = 1.05. The remaining parameters are kept

unchanged relative to the original calibration. Our calibration implies an equity

premium of 7.55% per year, a return volatility of 15.05% per year, a risk-free rate of

0.09% per year, and a price-dividend ratio of 17.75. As in the original calibration,

the model generates very little excess return volatility and a risk-free rate that is

only marginally positive.

We solve the model numerically based on code on Zhiguo He’s website,

https://voices.uchicago.edu/zhiguohe

Option prices are computed on a grid of 1,000 equally-spaced points for the model’s

state yt (the ratio of the households’ wealth and the current dividend level). The

model is cast in continuous-time. We compute option prices for a maturity of 1
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month via Monte Carlo integration by simulating the model at a daily frequency

(dt = 1/252) for 21 trading days. To do so, the model is time-discretized based on an

Euler scheme. We rely on 5× 108 simulated paths for each value of the state, which

is sufficient to ensure that simulation noise has a negligible effect on our results.

I.9 Constantinides and Ghosh (2017)

Constantinides and Ghosh (2017) extend the incomplete markets model of Constan-

tinides and Duffie (1996) with countercyclical left skewness in idiosyncratic risk, and

propose a calibration that matches basic quantity and return moments. We follow

their solution approach, which approximates the wealth-consumption and price-

dividend ratios with log-linear functions and then derives asset prices analytically.

We deviate from the original calibration for two reasons. First, while replicating

the paper’s main table, Table III, we discovered that it mistakenly calibrates the

quarterly log price-dividend ratio in the model to the annual log price-dividend ratio

in the data. The annual log price-dividend ratio in the model therefore exceeds its

data counterpart by ln(4) = 1.39. The authors confirmed this mistake via email.

Second, the original calibration uses a quarterly frequency, but we require monthly

option prices to compute EP (x). We therefore re-calibrate the model at the monthly

frequency, as shown in Table 2. Parameter values are chosen to match quarterly

moments (and annual moments for the log price-dividend ratio) from the original

paper based on simulated model data that is time-aggregated to the corresponding

frequency. The quality of our calibration is comparable to that in the original paper

and it matches the correct empirical counterpart of the price-dividend ratio.

The model features four IID shocks: standard normals in consumption and div-

idend growth and Poisson and Gamma shocks to the model’s state xt (household

risk). We compute option prices via Monte Carlo integration on grid with 1,000

equally-spaced points for the state. We rely on 109 Monte Carlo draws and an iden-

tical seed for each value of the state, which is sufficient to ensure that simulation
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Table 2: Monthly calibration of the Constantinides and Ghosh (2017) model

Prices

E[rf ] σ[rf ] AC1[rf ] E[rm] σ[rm] AC1[rm] E[p/d] σ[p/d] AC1[p/d]

Data 0.005 0.005 0.863 0.019 0.087 0.056 3.745 0.411 0.972

Model 0.003 0.023 0.875 0.013 0.094 -0.063 3.728 0.185 0.872

Consumption and Dividends

E[∆c] σ[∆c] E[∆d] σ[∆d] AC1[∆d] µ
1/2
2 (∆cCEX) µ3(∆cCEX)

Data 0.004 0.004 0.005 0.026 0.328 0.379 -0.025

Model 0.004 0.003 0.007 0.016 0.211 0.363 -0.031

Preference Parameters

γ ψ δ

1.18 1.01 0.982

Other Parameters

µ σa ν ξ ρ σ αd σd βd ω̂ σ̂

0.001 0.002 0.044 0.00012 0.959 0.010 0.002 0.011 -0.034 0.222 0.272

Data moments are taken from Table III in Constantinides and Ghosh (2017). All series are quar-

terly. The log price-dividend ratio equals the current price, divided by the sum of dividends over the

previous year. The model is solved at the monthly frequency, and simulated model data (for 300,000

months) is time-aggregated to the frequency of the data. Cross-sectional moments of household

consumption growth are based on a simulated panel of 100,000 households over the same 300,000

months. Exact parameter values for the calibration are available in our replication code package.

noise has a negligible effect on our results. The option pricing equation (3) requires

expressions for the pricing kernel, price-dividend ratio, and dividend growth, which

are given in equations 3, 13, and 12 of the original paper, respectively.

I.10 Schreindorfer (2020)

The disappointment aversion model of Schreindorfer (2020) admits analytical so-

lutions for all asset prices, including options. We solve the model based on the

replication code on David Schreindorfers’s website,

www.davidschreindorfer.com
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J Computing EP (x) in the models

EP (x) derives from the densities f(R) and f∗(R), which we compute on an equally-

spaced grid R1, . . . , RN with N = 10, 000 points. Table 3 shows the endpoints of

the grid, which were chosen to contain the relevant region of the densities’ support

for each model. Both densities are found by first computing the state-dependent

(conditional) densities f(R, ξt) and f∗(R, ξt), and then averaging them over the

model’s state ξt based on a long simulation.

f∗(R, ξt) is computed via Breeden and Litzenberger (1978) based on the put-

to-spot price ratio, which we compute from (3) for each model as described in the

previous section. Specifically, we find option prices for each point in the grid, as

well as the points Ri ± ϵ (for a small ϵ), and then compute the conditional density

based on the second-order central difference

f∗(Ri, ξt) = (1+Rf (ξt))
P(1 +Ri − ϵ, ξt) + P(1 +Ri + ϵ, ξt)− 2P(1 +Ri, ξt)

ϵ2
. (5)

f(R, ξt) is computed with a mixture of analytical, quadrature, and simulation meth-

ods. We then simulate each model’s state for L = 107 periods and find the uncon-

ditional densities as

f(Ri) =
1

L

L∑
l=1

ft(Ri, ξl), i = 1, ..., N

f∗(Ri) =
1

L

L∑
l=1

ft(Ri, ξl), i = 1, ..., N.

(6)

Based on the densities, the equity premium decomposition is computed as

EP (x) =

∑N
i=1 1 {Ri ≤ x}Ri(f(Ri)− f∗(Ri))δ∑N

j=1Rj(f(Rj)− f∗(Rj))δ
, (7)

where δ = Ri+1 −Ri is the bin width and 1{·} an indicator function.
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Table 3: Endpoints of the return grid for f and f∗

Model R1: lower bound RN : upper bound

Campbell-Cochrane (1999) -0.35 0.35

Bekaert-Engstrom (2017) -0.80 0.50

Bansal-Yaron (2004) -0.35 0.35

Drechsler-Yaron (2011) -0.80 1.00

Barro (2009) -0.99 3
√

1/12

Wachter (2013) -0.99 3
√

1/12

Backus-Chernov-Martin (2011) -0.99 3
√

1/12

Schreindorfer (2020) -0.60 0.50

Constantinides-Ghosh (2017) -0.99 1.50

He-Krishnamurthy (2013) -0.50 0.35

K Small Sample Model Assessment

In Table I of the paper, we compare empirical moments of stock market tail events

to the corresponding population moments in asset pricing models. Here, we test

the same models by assessing the likelihood with which they replicate the empirical

moments in finite samples. We simulate 10 million samples of length 360 months

(the length of our data) from each model, compute the equity premium contribution,

probability, and price of risk for returns in the interval [−30%,−10%] in each sample,

and then report percentiles of the resulting sampling distribution.9

We initially follow the common approach of computing univariate confidence

intervals for each statistic of interest, as for example in Beeler and Campbell (2012).

Table 4 shows that the models of Campbell and Cochrane (1999), Barro (2009),

and Wachter (2013) are rejected at the 5% significance level based on EP (−.1) −

EP (−.3), whereas the model of Bansal and Yaron (2004) is rejected at the 10% level.

In contrast, the extensions of Backus et al. (2011), Drechsler and Yaron (2011),

9Note that the monthly decision interval of the models prevents us from replicating the daily

sub-sampling approach that was used empirically. Model-based confidence intervals are therefore

wider than their empirical counterparts.
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and Bekaert and Engstrom (2017) cannot be rejected at any common significance

level based on EP (−.1) − EP (−.3), and only Backus et al. (2011) and Bekaert

and Engstrom (2017) can be rejected based on price of risk
∫ −.1
−.3 f∗(R)dR∫ −.1
−.3 f(R)dR

at the 10%

level. Based on this evidence alone, models with non-normal shocks therefore appear

capable of generating finite samples that mimic our data.

However, an important shortcoming of this assessment is that a sequence of

univariate tests is not as powerful as a single, multivariate test. For example, it is

possible that a model never comes close to matching all three statistics of interest in a

single finite sample, despite frequently generating each of them in different samples.

This is problematic, as we have argued that a realistic account of EP (x) requires

high risk prices for tail events. Multivariate test of structural models are commonly

based on formal estimations, either moment- or likelihood-based, and asymptotic

inference procedures. Unfortunately, similar testing procedures do not appear to

exist for assessing structural models multivariately in finite samples. We therefore

rely on a simple, but admittedly ad-hoc, bivariate extension of the commonly-used

univariate test. Specifically, we compute the probability with which a given model

simultaneously produces an equity premium contribution EP (−.1)−EP (−.3) and

price of risk
∫ −.1
−.3 f∗(R)dR∫ −.1
−.3 f(R)dR

in excess of the statistics’ respective empirical point esti-

mates. The last column in Table 4 reports the p-value of this bivariate test. We

find that, apart from Schreindorfer (2020), none of the models produce such samples

with a probability above 5%. It is therefore unlikely for them to have generated the

data.
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Table 4: Small sample model statistics

Paper
EP (−.1)−
EP (−.3)

−.1∫
−.3

f(R)dR

−.1∫
−.3

f∗(R)dR

−.1∫
−.3

f(R)dR

Bivariate

p-value

Data, 1990-2019 0.666 0.016 2.627

Campbell-Cochrane (1999) 0.028 0.003 1.382 0.003

(-0.11, 0.24) (0, 0.014) (0.65, 3.70)

[-0.20, 0.33] [0, 0.017] [0.57, 4.16]

Bekaert-Engstrom (2017) 0.388 0.039 1.440 0.013

(-0.08, 0.79) (0.020, 0.061) (0.96, 2.56)

[-0.23, 0.93] [0.017, 0.067] [0.89, 2.96]

Bansal-Yaron (2004) 0.072 0.014 1.205 0.005

(-0.43, 0.49) (0.003, 0.029) (0.64, 3.39)

[-0.82, 0.84] [0.003, 0.032] [0.58, 4.34]

Drechsler-Yaron (2011) 0.358 0.019 1.683 0.035

(0.09, 0.93) (0.006, 0.039) (1.04, 4.09)

[0.02, 1.25] [0.003, 0.044] [0.97, 5.46]

Barro (2009) 0.026 0.000 0.198 0.000

(-0.13, 0.05) (0, 0.003) (0.10, 0.20)

[-0.17, 0.06] [0, 0.003] [0.10, 0.20]

Wachter (2013) 0.052 0.008 1.192 0.001

(-0.15, 0.22) (0, 0.039) (0.6, 3.05)

[-0.23, 0.27] [0, 0.045] [0.50, 3.76]

Backus-Chernov-Martin (2011) 0.320 0.025 1.384 0.012

(-0.38, 1.11) (0.014, 0.039) (0.89, 2.49)

[-0.98, 1.75] [0.011, 0.044] [0.78, 3.11]

Schreindorfer (2020) 0.808 0.014 3.569 0.612

(0.53, 1.58) (0.006, 0.025) (1.98, 8.92)

[0.50, 1.96] [0.003, 0.028] [1.78, 17.84]

Constantinides-Ghosh (2017) 0.305 0.011 1.424 0.040

(-0.03, 0.78) (0, 0.053) (0.92, 3.61)

[-0.09, 0.91] [0, 0.067] [0.86, 4.29]

He-Krishnamurthy (2013) 0.104 0.006 1.831 0.000

(-0.04, 0.28) (0, 0.017) (0.81, 4.75)

[-0.07, 0.34] [0, 0.017] [0.73, 5.33]

This table presents finite sample statistics for the moments in Table I of the paper. We simulate

10 million samples from each model with the same length as the empirical sample and report the

median across samples. Intervals in square brackets correspond to percentiles 2.5 and 97.5, and

intervals in parentheses to percentiles 5 and 95. The last column shows a p-value for the bivariate

test H0 : EP (−.1)−EP (−.3) ≥ 0.666 and
∫−.1
−.3 f∗(R)dR∫−.1
−.3 f(R)dR

≥ 2.627, which assesses whether the models

are able to simultaneously generate equity premium contributions and risk prices that are at least

as large as in the data.
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