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1 Introduction

Most economists would agree that macroeconomic risk is an important source of

stock market risk premia. Indeed, equilibrium asset pricing theories typically assume

that fundamental shocks represent the only source of priced risk, as in Lucas (1978).

There is far less agreement, however, about the types of macroeconomic shocks

reflected in asset prices or investors’ risk attitudes towards them. An important

reason is that theories based on vastly different fundamental risks, such as Campbell

and Cochrane (1999), Bansal and Yaron (2004), Rietz (1988), and Barro (2006),

have similar implications for many key data features, including the average equity

premium.

In this paper, we propose a data-based metric for discriminating between asset

pricing theories based on how they generate the equity premium. Our metric builds

on the concept of Arrow-Debreu securities – claims to a unit payoff in a particular

state of nature. We show that the absence of arbitrage opportunities allows us to

write the unconditional equity premium as

E[Rt+1 −Rft ] =

∫ ∞
−1

R [f(R)− f∗(R)] dR, (1)

where f(R) and f∗(R) = E[f∗t (R)] are, respectively, the average payoff and average

forward price of an Arrow-Debreu security that pays $1 if the realized stock market

return equals R. The average payoff can equivalently be interpreted as an uncondi-

tional return distribution. The forward price, f∗t (R), can equivalently be interpreted

as a preference-adjusted, or “risk-neutralized”, return distribution under which the

expected stock market return equals the risk-free rate. Equation (1) represents a

powerful tool for understanding how stock prices are formed. Specifically, it allows

us to assess how much individual states contribute to the overall equity premium

by evaluating the integral separately for different regions.
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Data

Campbell-Cochrane (1999)

Bansal-Yaron (2004)

Wachter (2013)

Barro (2009)
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Figure I: Sources of the equity premium. The integral in Equation (1) is shown as

a function of the upper limit of integration, and normalized by the total equity premium:

EP (x) ≡ 1

E[Rt+1−Rf
t ]

∫ x

−1
R [f(R)− f∗(R)] dR. The sample spans 1990-2018. The shaded

area marks monthly returns between -34% and -11.3%, a set of states that accounts for 9/10

of the equity premium in the data.

We implement the decomposition empirically for the S&P 500, a broad US stock

market index, by estimating f from returns and f∗ from option prices. Using these

estimates, the solid line in Figure I shows the fraction of the equity premium as-

sociated with returns below different thresholds, a function we coin “EP (x)”. By

construction, increasing segments of the EP (x) curve reflect states that contribute

positively to the equity premium, whereas decreasing segments reflect states that

contribute negatively. Strikingly, the figure shows that the entire equity premium is

associated with monthly returns below -11.3%, while 9/10 of it stems from the gray-

shaded region between -34% and -11.3%. Such returns occur roughly at a business

cycle frequency, and they have historically coincided with events like Iraq’s invasion

of Kuwait in 1990, the collapse of Long Term Capital Management in 1998, the

September 11 attacks in 2001, and the bankruptcy of Lehman Brothers in 2008.

Investors are therefore predominantly compensated for shocks that coincide with

infrequent, large, but not extremely large negative stock market returns.
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We show that the shape of EP (x) to the right of the gray-shaded region, in-

cluding the fact that the curve rises above one, is consistent with a pricing kernel

that is U-shaped when projected onto returns. Because this non-monotonicity has

been extensively documented in prior work and mechanisms to explain it exist, we

do not make it a focal point of our paper.1

The remaining lines in Figure I show EP (x) for different asset pricing theories.

The habit model of Campbell and Cochrane (1999) and the long-run risks model

of Bansal and Yaron (2004) build on very different economic mechanisms, but nev-

ertheless attribute the equity premium to nearly identical return states. In both

models, positive returns account for about half of the equity premium, while re-

turns below -11.3% account for very little. We show that these features are a result

of lognormality. The rare disaster model of Barro (2006, 2009) attributes 91/100 of

the equity premium to states on the left of the gray-shaded region, and more than

half to returns below -89%. By extending the Barro model with time variation in the

probability of disasters and a recursive utility agent, Wachter (2013) combines the

long-run risks and disaster mechanisms. We find that her model attributes about

2/3 of the equity premium to the far left tail and 1/3 to states on the right of the

gray-shaded region. This evidence suggests that sources of stock market risk premia

in popular asset pricing models differ substantially from those in the data.

To understand the origin of these discrepancies, consider the Arrow-Debreu se-

curity associated with a large negative return, R̃, in the gray-shaded region of Figure

I. Because this security provides a valuable hedge to investors, its average forward

price exceeds its average payoff, f∗(R̃) > f(R̃), and the state contributes positively

to the equity premium. This effect is present in all of the aforementioned models,

but its magnitude is considerably smaller than in the data. Equation (1) implies

1Cuesdeanu and Jackwerth (2018) provide a recent survey of this literature.

4



that the reason must either lie in R̃ being less likely than in the data, or in it being

associated with lower levels of marginal utility – see Section 2 for details.

Recent studies have augmented the aforementioned models with left-skewed

shocks in fundamentals to align them with option prices and higher moments of

stock market returns. Naturally, doing so increases the probability of large nega-

tive returns. We find that returns in the gray-shaded region of Figure I account

for approximately 1/3 of the equity premium in the habit model of Bekaert and

Engstrom (2017), the long-run risks model of Drechsler and Yaron (2011), and the

“frequent jump model” of Backus et al. (2011). This number is higher than in the

original models, but differences between it and the empirical value of 9/10 remain

economically large and statistically significant for all three extensions. We also find

that the augmented models inflate the probability of the associated states by factors

of 1.5 to 2.5 relative to the data. The scope for rationalizing our empirical evidence

based on a larger quantity of tail risk alone therefore seems limited.

Backus et al. (2011) and Martin (2017) show that many representative agent

models are inconsistent with option prices, in that they either imply too little or

too much skewness in the option-implied return distribution. Our evidence is con-

ceptually distinct from this finding because risk premia reflect differences between

the option-implied and historical return distributions. Indeed, our analysis of the

Backus et al. (2011) model shows that consistency with option prices does not imply

consistency with EP (x).

We argue that standard representative agent endowment economies provide only

two opportunities to increase the price of tail risk, i.e. the average value of marginal

utility coinciding with states like R̃. The first option is to alter the correlation struc-

ture between shocks to consumption and dividends. For example, if large drops in

the stock market are likely to coincide with declines in aggregate economic activity

(and hence elevated marginal utility), while small returns are more or less indepen-
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dent of the real economy, the price of risk for tail events is relatively higher. The

second option is to assume a utility function that places a greater emphasis on tail

events. We provide examples of both channels in simple IID settings, and show that

they can account for key features of the empirical EP (x) curve. The models we con-

sider are kept highly stylized to illustrate their mechanisms in the clearest possible

way, i.e. we do not view them as fully specified asset pricing theories. Nevertheless,

we believe that they illustrate the necessary ingredients for aligning representative

agent models more closely with sources of the equity premium.

Our findings complement those of van Binsbergen et al. (2012), who rely on

options data to show that near term dividends earn larger risk premia than far term

dividends. Their evidence speaks to the pricing of shocks with different persistence

levels and is therefore primarily informative about investors’ time preferences. Our

evidence speaks to the pricing of shocks with different magnitudes and is therefore

primarily informative about investors’ risk preferences. A complete explanation of

the equity premium must be consistent with the pricing of all shocks to aggregate

dividends: transient, persistent, small, and large.

We also relate closely to Bollerslev and Todorov (2011), who quantify the impor-

tance of “jumps” for the conditional equity premium in the data, and conclude that

“any satisfactory equilibrium-based asset pricing model must be able to generate large

and time-varying compensations for the possibility of rare disasters”. Methodolog-

ically, our approach differs from theirs because we study the unconditional equity

premium. As a result, we do not require an extreme value theory to approximate the

probability of large low-frequency (e.g. monthly) returns based on the probability of

large high-frequency (e.g. 5 minute) returns. Economically, we reach the opposite

conclusion regarding the importance of rare disasters. In particular, our evidence

shows that the disaster models of Barro (2009) and Wachter (2013) attribute the

equity premium primarily to the extreme left tail, while the data attributes it almost
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exclusively to an intermediate left tail region.

Welch (2018) shows that combining the market with a protective put that is 15%

out-of-the-money lowers average returns by only 2% p.a. Based on this evidence, he

argues that rare disasters account for at most 2% (in absolute terms) of the equity

premium. Seo and Wachter (2018) show that this reasoning is incorrect, however,

because the disaster model of Wachter (2013) replicates Welch’s empirical evidence.

Our paper is therefore the first to show that popular disaster models fail to account

for sources of the equity premium.

More broadly, a large literature in empirical option pricing shows that investors

are willing to pay substantial premia to hedge against big stock market corrections,

a phenomenon Rubinstein (1994) coined “crash-o-phobia”. Coval and Shumway

(2001), Carr and Wu (2009), and Broadie et al. (2009) document that option-based

hedging strategies generate Sharpe ratios that are negative and 2-5 times larger in

magnitude than that of the market. More recently, Dew-Becker et al. (2017) show

that leading representative agent models are inconsistent with the high Sharpe ratios

of short maturity option portfolios. We build on this prior evidence by quantifying

the importance of tail risk for the equity premium.

2 Decomposing the equity premium

We begin by deriving EP (x) and relating it to the pricing kernel. Let Rcumt+1 =

St+1+Dt+1

St
be the cum-dividend return on the market, ft(R) its conditional prob-

ability density function (PDF), and f∗t (R) the forward price of an Arrow-Debreu

security that pays $1 if Rcumt+1 = R and $0 otherwise. Note that the conditional PDF

can be interpreted as the expected payoff of the Arrow-Debreu security for state R.
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2.1 From Arrow-Debreu to the equity premium

A $1 investment in the market has a payoff of Rcumt+1 , and can therefore be replicated

with a portfolio that contains R units of the Arrow-Debreu security for state R,

for all R ∈ [0,∞]. Because the forward price of $1 equals Rft and the forward

price of the aforementioned portfolio equals
∫∞

0 Rf∗t (R)dR, the absence of arbitrage

opportunities implies that2

∫ ∞
0

Rf∗t (R)dR = Rft . (2)

Using this equation, we can write the conditional equity premium as

Et[Rcumt+1 ]−Rft =

∫ ∞
0

R [ft(R)− f∗t (R)] dR (3)

and interpret it as the difference between the expected payoff and the forward price

of a portfolio of Arrow-Debreu securities.

Two issues hinder our ability to estimate the integrant in Equation (3) empir-

ically. First, option prices only allow us to identify Arrow-Debreu state prices for

ex-dividend, rather than cum-dividend, returns. Second, estimates of the conditional

return distribution require strong statistical assumptions and necessarily suffer from

a mismatch between investors’ and the econometrician’s information set.

We address issue one by assuming that time-(t + 1) dividends are in investors’

time-t information set. This assumption is reasonable for short return horizons

such as one month, which are the focus of our empirical analysis, because S&P 500

companies announce dividends on average three weeks in advance of the ex-dividend

2“No arbitrage” also ensures that f∗t (R) ≥ 0 and
∫
f∗t (R)dR = 1, so that f∗t (R) can

equivalently be interpreted as a PDF. Equation 2 is therefore often written as E∗
t [Rcum

t+1 ] = Rf
t

and interpreted as stating that the expected return equals the risk-free rate under the “risk-

neutral” return distribution.
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date (Schulz 2016, Table I).3 It implies that the expected dividend yield and the

dividend yield’s forward price are identical, so that their difference drops out of

Equation (3). We can therefore evaluate the integral based on expected payoffs and

state prices for ex-dividend returns. In what follows, we work with net, rather than

gross returns, because doing so leads to a more natural interpretation of our equity

premium decomposition. This change amounts to subtracting the constant 1 from

R, which also drops out of Equation (3) because
∫
f =

∫
f∗ = 1. Henceforth, we

therefore interpret ft and f∗t as the expected payoff and forward price of Arrow-

Debreu securities that are written on the net ex-dividend return. In an abuse of

notation, we continue to rely on the same symbols.

To address issue two, we take the unconditional expectation of Equation (3) and

note that E[ft(R)] equals the unconditional PDF, f(R). Doing so yields Equation

(1) in the introduction. To decompose the equity premium, we define

EP (x) ≡
∫ x
−1R [f(R)− f∗(R)] dR∫∞
−1R [f(R)− f∗(R)] dR

, (4)

which measures the fraction of the unconditional equity premium that is associated

with returns less than x. Note that the total equity premium in the denominator

of (4) is a normalization constant that does not depend on x. The normalization

ensures that, like a CDF, EP (x) approaches zero for return thresholds in the far left

tail and approaches one for return thresholds in the far right tail. Unlike a CDF,

however, theory does not restrict EP (x) to be monotonically increasing.

3van Binsbergen et al. (2012) show that claims to “near-term” dividends earn larger risk

premia than the market itself. Because this finding is based on claims to market dividends

over the coming 1.6 years (on average), however, it is not inconsistent with the absence of

risk premia on very short-term dividends.
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2.2 Relating EP (x) to the pricing kernel

To interpret EP (x) through the lens of equilibrium asset pricing models, it is useful

to relate it to the pricing kernel, M . The absence of arbitrage opportunities implies

f∗t (Rt+1)

ft(Rt+1)
=

Et[Mt+1|Rt+1]

Et[Mt+1]
. (5)

The “projected pricing kernel”, Et[Mt+1|Rt+1], reveals how marginal utility varies

with returns and it has the same pricing implications as M for the market and for

any derivative that is written on the market.4 Using (5), the conditional equity

premium in (3) can be expressed as

Et[Rt+1]−Rft =

∫ ∞
−1

Rft(R)

(
1− Et[Mt+1|R]

Et[Mt+1]

)
dR. (6)

Conditionally, returns are therefore important for risk premia if they are (i) large

in magnitude (large absolute R), (ii) conditionally likely (high ft), or (iii) negative

and associated with high marginal utility (Et[Mt+1|Rt+1] > Et[Mt+1]), or positive

and associated with low marginal utility (Et[Mt+1|Rt+1] < Et[Mt+1]). Taking the

unconditional expectation of (6) and using the fact that E[XY ] = E[X]E[Y ] +

cov(X,Y ) shows that the unconditional equity premium equals

E[Rt+1 −Rft ]

=

∫ ∞
−1

R×
(
f(R)

(
1− E

[
Et[Mt+1|R]

Et[Mt+1]

])
− cov

[
ft(R),

Et[Mt+1|R]

Et[Mt+1]

])
dR.

(7)

Unconditionally, returns are important for risk premia if they are (i) large in mag-

nitude, (ii) unconditionally likely, (iii) negative and associated with high average

marginal utility or positive and associated with low average marginal utility, or

(iv) negative and have a conditional probability, ft(R), that co-varies positively

with their conditional marginal utility, Et[Mt+1|R]/Et[Mt+1], or if they are positive

4Specifically, the law of iterated expectations ensures that Et[Mt+1g(Rt+1)] =

Et[Et[Mt+1|Rt+1]g(Rt+1)] for any payoff function g(·).
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and have a conditional probability that co-varies negatively with their conditional

marginal utility. The covariance term equals zero in IID environments. However, we

find that it is also quantitatively negligible relative to the first term in (7) in the non-

IID models we consider (Campbell-Cochrane 1999, Bansal-Yaron 2004, Drechsler-

Yaron 2011, Wachter 2013, and Bekaert-Engstrom 2017). These results are detailed

in the online appendix.

Equation (7) helps us understand two features of the empirical EP (x) curve in

Figure I. First, the curve is falling for small negative returns and rising for small

positive returns. Ignoring the covariance term in (7), this implies that returns in

this region are associated with below average marginal utility, E
[
Et[Mt+1|R]
Et[Mt+1]

]
< 1.

Second, the curve is falling for large positive returns. Because EP (∞) = 1, this fea-

ture is equivalent to the observation that the EP (x) curve rises above one. Again

ignoring the covariance term, it implies that large positive returns are associated

with above average marginal utility, E
[
Et[Mt+1|R]
Et[Mt+1]

]
> 1. Taken together, these ob-

servations imply that the EP (x) curve is consistent with a U -shaped pricing kernel.

3 Estimation

We discuss data sources and summarize our approach for estimating average payoffs

and forward prices of Arrow-Debreu securities. The appendix contains additional

details about data filters, our approach for estimating f∗, and robustness tests.

3.1 Payoffs

The payoff of an Arrow-Debreu security for state R is given by the indicator function

1{Rt+1 = R}. Its conditional expectation therefore equals the conditional PDF,

Et[1{Rt+1 = R}] = ft(R). We estimate the average payoffs, f(R) = E[ft(R)], with

the unconditional empirical PDF, which attaches a probability of 1/T to each return
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observation. The sample is daily, spans 1990-2018, and consists of overlapping 30

calendar day ex-dividend returns on the S&P 500 index. Our estimate of f(R)

implies that monthly returns have an annualized volatility of 15.02%, skewness of

-0.69, kurtosis of 7.22, and a probability of 1.08% of falling below -11.3%. Returns

below -11.3% have therefore occurred every 1
12×0.0108 = 7.7 years on average, whereas

returns below -34% have not occurred in our sample.

3.2 Forward prices

We rely on a well-known result by Breeden and Litzenberger (1978) to recover f∗t

from options prices. Specifically, the absence of arbitrage opportunities implies that

the price of a European put option with strike K and moneyness X = K/St equals

Pt(X) =
St

Rft

∫ X

−1
(X −R)f∗t (R)dR. (8)

Differentiating this expression with respect to moneyness shows that the forward

price of a portfolio of Arrow-Debreu securities for states below R (the conditional

risk-neutral CDF), which we denote by F ∗t (R) =
∫ R
−1 f

∗
t (X)dX, equals

F ∗t (R) = St ×Rft ×
∂Pt(X)

∂X

∣∣∣∣
X=R

. (9)

Differentiating once again with respect to X shows that forward state prices (the

conditional risk-neutral PDF) are given by

f∗t (R) = St ×Rft ×
∂2Pt(X)

∂X2

∣∣∣∣
X=R

. (10)

Because Pt(X), F ∗t (R), and f∗t (R) can all be interpreted as prices, the absence

of arbitrage opportunities dictates that put prices are (i) non-negative, (ii) mono-

tonically increasing in moneyness, and (iii) convex in moneyness. When estimating

forward state prices based on Equation (10) in the data, we impose these theoretical
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constraints to discipline the shape of f∗t at moneyness levels and maturities where

few option price quotes are available.

Option price quotes for the period from January 5, 1990 to December 31, 2018 are

obtained from the Chicago Board Options Exchange (CBOE). The dataset contains

end-of-day information of all European exercise style options written on the S&P

500 index (underlying SPX). We apply standard filters to remove observations with

low liquidity and obvious data errors and measure option prices by the average of

bid and ask quotes.

In a perfect world, liquid option contracts would be available for a continuum

of moneyness-maturity pairs over [−1,∞]× [0,∞], and f∗t (R) would be recoverable

based on Equation (10) alone. In reality, option price quotes are somewhat noisy,

only available for a discrete set of moneyness-maturity pairs, and contracts are not

available for very long maturities or extreme moneyness levels. It is therefore neces-

sary to smooth, interpolate, and extrapolate observed price quotes to obtain sensible

estimates of f∗t . Doing so requires some structure. In a nutshell, our approach fits

a flexible, bivariate function in moneyness and maturity to observed option prices

subject to theoretical no arbitrage constraints, evaluates the function at a maturity

of 30 calendar days and a fine grid or moneyness, and computes state prices based

on Equation (10) via finite differences. The appendix provides details. Relative to

estimation methods that fit option prices separately for different maturities, our ap-

proach has the important advantage that it allows us to estimate 30-day state prices

on every day of the sample, even those without 30-day option price quotes. Because

30-day quotes are only observed on one day per month for most of the sample, this

feature makes our estimate of average state prices considerably more precise.
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Figure II: Average Arrow-Debreu payoffs and forward prices in 1990-2018 data.

The estimated f∗(R) is shown in Figure II, together with a smooth estimate of

f(R).5 Under f∗, monthly returns have an annualized volatility of 19.1%, skewness

of -1.56, kurtosis of 10.72, and a 3.50% probability of falling between -34% and

-11.3% (one event every 2.4 years). This probability is 3.24 times higher than the

corresponding historical probability. The dash-dotted line in Figure II shows same

probability ratio for the entire return state space. Clearly, returns in the far left

tail are associated with very high marginal utility for investors. In sections 4–6, we

compare these probability ratios to their counterparts in asset pricing models.

5The empirical PDF consists of point masses and is therefore challenging to plot. For

Figure II, we approximate f with a 10-th order polynomial between percentiles 10 and 90

and with a generalized extreme value (GEV) distribution in both extreme tails. The GEV

distribution nests the tail shape of most parametric families of PDFs and has favorable

asymptotic properties; see the extreme value theorem and discussion in Figlewski (2008).

We use the empirical PDF (without smoothing) for all other results in the paper.
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Figure III: Empirical sampling distribution of EP (x). For a partition of the return

state space, the figure shows the joint sampling distribution of each region’s contribution

to the equity premium (as a fraction of the total equity premium). The distribution is

constructed with a block-bootstrap, using a block length of 21 trading days and 10 million

bootstrap samples.

3.3 Statistical precision

Figure I shows EP (x) for our empirical estimates of f(R) and f∗(R). To assess the

amount of statistical uncertainty associated with key features of the curve, we use

a block bootstrap to construct the joint sampling distribution of EP (−34%) and

EP (−11.3%)−EP (−34%). Figure III shows that it is very likely that most of the eq-

uity premium is attributable to return states between −34% and −11.3% (the gray-

shaded region in Figure I) in population. In particular, EP (−11.3%)−EP (−34%)

exceeds one half in 97.8% of all bootstrap samples. Similarly, returns below −34%

are very likely not the main source of stock market risk premia. EP (−34%) falls be-

low one half in 98.2% of bootstrap samples. It is also worth noting that points to the
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north-east of the solid line represent samples for which the estimated EP (−11.3%)

exceeds one, so that returns above −11.3% contribute negatively to the equity pre-

mium. This occurs in 47.1% of samples.

One issue the bootstrap cannot account for is the potential underrepresentation

of “disasters” in our 1990-2018 sample. If more disasters had occurred, however,

f(R) would have had more probability mass in the far left tail, the difference be-

tween f∗ and f in that region would have been smaller, and such states would have

accounted for less of the equity premium. If anything, the low importance of states

below -34% therefore reflects the opposite of a “Peso problem”.

4 EP (x) in lognormal asset pricing models

Many asset pricing models are lognormal – they imply joint normality of log re-

turns and the log pricing kernel – and yield both tractable solutions and simple

intuition as a result. It is well-known, however, that log returns for most assets are

imperfectly approximated by the normal distribution. We evaluate what lognormal-

ity implies about our state space decomposition of the equity premium in a simple,

IID representative agent model. Next, we show that conditionally lognormal models

with richer dynamics, such as Campbell and Cochrane (1999) and Bansal and Yaron

(2004), have almost identical implications for EP (x). The appendix discusses how

EP (x) is computed for all models under consideration.

4.1 Unconditional lognormality

We begin with a description of the IID model (henceforth “Model 1”). Aggregate

consumption in period t equals Ct, whereas the aggregate dividend is Dt. Equity

is a claim to the dividends in all future periods. Log consumption growth ∆ct+1 =

16



Figure IV: Unconditional lognormality (Model 1).

ln
(
Ct+1

Ct

)
and log dividend growth ∆dt+1 = ln

(
Dt+1

Dt

)
are given by

∆ct+1 =g + σεct+1

∆dt+1 =g + ϕσεdt+1,

(11)

where εc and εd are bivariate standard normal with correlation % = 1 and IID over

time. Section 6 considers cases with imperfect correlation. Our monthly calibration

assumes mean growth rates of g = 0.02/12, consumption growth volatility of σ =

0.03/
√

12, and “leverage” of ϕ = 5.5. The representative investor has power utility

preferences with a time discount factor of β = 0.991/12. We calibrate the coefficient

of relative risk aversion, γ = 15.84, to generate an equity premium of 8% per year.

The IID assumption implies ln(1 + Rt) = ∆dt, so that average Arrow-Debreu

payoffs (f) are given by a lognormal PDF with parameters g and ϕσ. The power

utility function and lognormal endowment imply that Arrow-Debreu forward prices

(f∗) equal a lognormal PDF with parameters g−γ%ϕσ2 and ϕσ (the online appendix

provides a derivation). The risk-neutral density of log returns therefore has the same

variance and a lower mean than the historical density – it is “shifted left”.

Figure IV shows EP (x) for Model 1, along with its determinants f and f∗.
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About half of the equity premium is attributable to positive and negative returns,

respectively. The reason is that f is nearly symmetric with a mean around zero,

while the pricing kernel overweights negative returns by about as much as it under-

weights positive returns. The risk-neutral density of simple returns, f∗, therefore

resembles a “left-shifted” version of f , and
∫
R(f − f∗) is about equal for positive

and negative returns. The figure further shows that states in the gray-shaded region

account for little of the equity premium. An obvious reason lies in the small quantity

of tail risk under lognormality. Table II shows that such states have a probability

of 0.005, less than half their empirical probability of 0.011. We quantify the price of

tail risk with the ratio of the average risk-neutral probability of states in the gray-

shaded region and their historical probability,
∫ −11.3%
−34% f∗(R)dR/

∫ −11.3%
−34% f(R)dR.

The numerator equals the average forward price of an asset that pays $1 if the re-

alized stock market return falls into the gray-shaded region, and the denominator

equals its average payoff. Table II shows that the lognormal model implies a price

of tail risk of 1.468, compared to a value of 3.236 in the data. Because the IID

assumption implies that E[M |R]/E[M ] = f∗/f unconditionally, we can also directly

compare the pricing kernel in Figure IV to the empirical density ratio in Figure

II. Clearly, the lognormal model implies that Arrow-Debreu forward prices in the

far left tail are substantially lower than in the data. Hence, the lognormal model

understates the importance of left tail events because the quantity and price of tail

risk are both substantially lower than in the data.

4.2 Habits and long-run risks

The habit model of Campbell and Cochrane (1999) and the long-run risks model of

Bansal and Yaron (2004) are approximately conditionally lognormal. Figure I shows

that their implied EP (x) curves look almost identical to that in the IID lognormal
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Table I: Characteristics of important return states: R ∈ [−34%,−11.3%]

EP fraction
∫
f(R)dR

∫
f∗(R)dR∫
f(R)dR

Data, 1990-2018 0.900 0.011 3.236

Lognormality

Model 1 0.052∗∗∗ 0.005∗∗ 1.468∗

Campbell-Cochrane (1999) 0.038∗∗∗ 0.004∗∗ 1.391∗

Bansal-Yaron (2004) 0.055∗∗ 0.006 1.311∗

Increased quantity of tail risk

Model 2 0.271∗∗ 0.011 1.755

Bekaert-Engstrom (2017) 0.369∗∗ 0.028∗∗ 1.511∗∗

Drechsler-Yaron (2011) 0.357∗∗ 0.017 1.738

Backus-Chernov-Martin (2011) 0.304∗ 0.021∗ 1.378∗∗

Barro (2009) 0.020∗∗∗ 0.001∗∗∗ 1.676

Wachter (2013) 0.046∗∗∗ 0.007 1.245

Increased price of tail risk

Model 3 0.801 0.011 3.135

Model 4 0.967 0.005∗∗ 9.935∗∗∗

Schreindorfer (2019) 0.720 0.008 4.685

“EP fraction”: fraction of the equity premium associated with monthly returns between

-34% and -11.3%;
∫
f(R)dR: probability of such returns;

∫
f∗(R)dR∫
f(R)dR

: ratio of their aver-

age risk-neutral to actual probability. Small sample p-values are computed from 1 million

simulated samples of length 336 months under each model. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.

model. Additionally, both models have very similar implications for the quantity

and price of tail risk, both of which are lower than in the data (see Table II). As

in the IID model, states in the gray-shaded tail region contribute about 5/100 to

the equity premium. The empirical contribution of 9/10 has a small sample p-value

below 5% in both models. Hence, time-variation in economic state variables has

little effect on the models’ pricing implications for shocks of different magnitudes.
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5 Increasing the quantity of tail risk

To what extent does the unimportance of left tail events in lognormal models re-

flect their small probability? To what extent does it reflect a small price of risk?

To answer these questions, we augment the lognormal model in Section 4.1 with

left-skewed shocks in fundamentals. As in Backus et al. (2011), consumption and

dividends are subject to both small shocks and “jumps”,

∆ct+1 =g + σεct+1 + (Jt+1 − λω)

∆dt+1 =g + ϕσεdt+1 + ϕ (Jt+1 − λω) ,

(12)

where εc and εd are bivariate standard normal with correlation %, and J equals a

Poisson mixtures of normals,

x ∼Poisson(λ)

Jt+1|x ∼N(xω, xν2).

(13)

Both the number of jumps (x) and the jump size are IID over time and independent

of (εc, εd). Because (12) demeans jumps with their expected value, λω, g represents

the mean of ∆c and ∆d. The values of g, ϕ, %, and β are kept unchanged relative

to Section 4.1. To keep the unconditional consumption volatility fixed at 3% per

year, we set σ = [0.03 − λ(ω2 + ν2)]/
√

12 (see Backus et al. 2011, equation 6).

We characterize the quantity of tail risk in monthly returns by their skewness (-

0.685), kurtosis (7.22), and probability of falling between -34% and -11.3% (0.011),

and replicate these moments in the model by setting ω = −2.09%, ν = 2.108%, and

λ = 0.26164 (one jump every 3.8 years on average). Jumps are therefore considerably

smaller and more likely than in typical calibrations of the rare disaster model. As in

Section 4.1, we choose the coefficient of relative risk aversion, γ = 14.89, to generate

an equity premium of 8% per year. We refer to this calibration as “Model 2”.
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Figure V: Left-skewed shocks (Model 2).

Figure V shows average prices and payoffs of Arrow-Debreu securities in the left

panel, and the EP (x) curve they imply in the right panel (solid line). The projected

pricing kernel is almost unchanged relative to the lognormal model and, as a result,

f∗ once again resembles a left-shifted version of f . Different from the lognormal

case, however, both EP (x) and the two densities remain positive until far into the

left tail. Table II shows that returns in the gray-shaded region account for 27/100

of the equity premium – almost six times their contribution in the lognormal model,

but still far below the 9/10 contribution in the data.

To investigate how sensitive this finding is with respect to the exact quantity of

tail risk, we consider calibrations with different jump intensities (λ). These calibra-

tions are illustrated with dashed lines in the right panel of Figure V. For each value

of λ, risk aversion is chosen to generate an equity premium of 8% per year, while

other parameters are left unchanged. The lowest line corresponds to the lognormal

calibration of Model 1 (λ = 0), whereas the highest line doubles the frequency of

jumps relative to the calibration of Model 2 (λ = 0.26164 × 2). In the later case,

returns have a skewness of -1.72, kurtosis of 12.38, and probability of 0.019 of falling

in the gray-shaded region – an amount of tail risk that far exceeds what we observe
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in the data. Nevertheless, we find that states in the gray-shaded region account for

only 47/100 of the equity premium. For comparison, we also compute our metrics

for the calibration of Backus et al. (2011, column 4 of their Table II), which assumes

somewhat smaller but more frequent jumps. We find that their calibration implies

that returns between -34% and -11.3% have a probability of 0.021 and account for

30.4/100 of the equity premium. This evidence suggests that a larger (and realistic)

quantity of tail risk than implied by lognormality is insufficient for capturing the

importance of left tail events.

5.1 Habits and long-run risks with skewed shocks

We consider the models of Bekaert and Engstrom (2017) and Drechsler and Yaron

(2011) to evaluate whether the implications of Model 2 carry over to environ-

ments with richer dynamics. Bekaert and Engstrom (2017) augment the Campbell-

Cochrane model with left-skewed shocks in consumption and dividend growth rates.

Table II shows that their calibration implies that states between -34% and -11.3%

have a probability of 0.028 (versus 0.011 in the data) and contribute 36.9/100 to

the equity premium. Drechsler and Yaron (2011) add jumps to the state variable

processes of the Bansal-Yaron model. We find that their calibration implies a prob-

ability of 0.017 and equity premium contribution of 35.7/100 for the same states.

For both models, the price of tail risk is similar to the one in the original calibra-

tions. Despite implying a quantity of tail risk that exceeds its empirical counterpart,

however, the Bekaert and Engstrom (2017) and Drechsler and Yaron (2011) models

attribute a significantly smaller role to states between -34% and -11.3% than the

data. The states’ empirical equity premium contribution of 9/10 has a small sample

p-value below 5% in both models.
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Figure VI: The Barro (2009) model.

5.2 Rare disasters

Another perspective on the quantity of tail risk comes from the rare disaster lit-

erature initiated by Rietz (1988). Barro (2006, 2009) measures large consumption

declines in international data and shows that they imply a realistic equity premium

in an IID representative agent model with a risk aversion coefficient of 4. His cal-

ibration can be interpreted as an extreme version of Model 2, where jumps occur

rarely but take on disastrous magnitudes. Barro’s main results are based on an un-

levered consumption claim. We assume a leverage parameter of 2.6, the value used

by Wachter (2013). Figure I shows that the model attributes more than half of the

equity premium to returns below -89%, but very little to states in the gray-shaded

region. Figure VI shows average forward prices and payoffs of Arrow-Debreu securi-

ties for the model. The low degree of risk aversion results in a flat pricing kernel for

small to moderately large negative returns, so that f and f∗ look nearly identical

in that region. In contrast, the pricing kernel rises to a value of about 100 in the far

left tail, and Arrow-Debreu forward prices exceed the securities’ expected payoffs

by two orders of magnitude. The single worst disaster realization alone (out of 87

possible disasters in the calibration) accounts for about 1/3 of the equity premium.
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Wachter (2013) augments the Rietz-Barro model with a long-run risks channel

by assuming persistent variation in the probability of disasters and an Epstein-Zin

agent with a preference for the early resolution of uncertainty. Figure I shows that

her calibration attributes about 2/3 of the equity premium to “disaster states” in the

far left tail and 1/3 to “long-run risk states” to the right of the gray-shaded region.

Despite a probability of 0.007, however, states in the gray-shaded region account

for only 4.7/100 of the equity premium. The states’ empirical equity premium

contribution of 9/10 has a small sample p-value below 1%. Its reliance on extremely

negative shocks therefore makes the rare disaster mechanism inconsistent with the

importance of more moderate negative return states, regardless of whether or not

the probability of disasters varies over time.

6 Increasing the price of tail risk

The price of risk for different return states reflects the relationship between returns

and consumption and the relationship between consumption and marginal utility. To

increase the price of risk for tail events in the stock market, a model therefore either

has to make large, adverse shocks to dividends relatively more likely to coincide

with large, adverse shocks to consumption, or increase the level of marginal utility

associated with adverse shocks to consumption. An important challenge in this

context is that we cannot simultaneously increase the price of risk for small negative

returns, because doing so would result in an unrealistically large equity premium.

Simply increasing risk aversion or making all shocks more correlated can therefore

not increase the price of tail risk. We discuss two mechanisms that overcome this

tension and illustrate their quantitative implications in simple IID settings.

24



6.1 Co-tail risk

The models considered so far exclusively rely on two correlation structures for con-

sumption and dividend growth. The first approach assumes that consumption and

dividends are perfectly correlated, ∆d = ϕ∆c, as in Abel (1999). The IID models

in Sections 4.1 and 5 and the models of Barro (2009), Backus et al. (2011), Wachter

(2013), and Bekaert and Engstrom (2017) fall in this category. The second ap-

proach, exemplified by Campbell and Cochrane (1999), Bansal and Yaron (2004),

and Drechsler and Yaron (2011), models shocks to consumption and dividends as

(conditionally) jointly normal. Because the bivariate normal distribution relies on

a single correlation coefficient, an increase in the dependence of large shocks neces-

sitates a simultaneous increase in the dependence of small shocks. Thus, neither

approach makes it possible to increase the relative importance of large dividend

shocks for the equity premium.

An alternative correlation structure results if large negative shocks to consump-

tion and dividends are likely to coincide, while other shocks are not. We illustrate

this mechanism based on the Poisson-normal endowment in Equations (12) and (13)

by assuming that jumps are common (as before) and Gaussian shocks are imperfectly

correlated. Starting with the calibration in Section 5 (% = 1), which corresponds to

the lowest EP (x) curve in Figure VII, we gradually lower the correlation of Gaussian

shocks and raise the coefficient of relative risk aversion to keep the equity premium

fixed at 8%. All other parameters are kept unchanged relative to Section 5. Because

the marginal shock distributions are not altered in these calibrations, the process

continues to match the quantity of tail risk in monthly returns.

As the correlation of Gaussian shocks is lowered and risk aversion is raised,

jumps become increasingly more important for the equity premium. The highest

EP (x) curve in Figure VII corresponds to a calibration with independent Gaussian
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Figure VII: Increased co-tail risk (Model 3).

shocks (% = 0; henceforth “Model 3”), for which the left panel shows average state

prices and payoffs. Relative to the perfect correlation case, the model’s implica-

tions change in several important ways. First, the pricing kernel is approximately

horizontal and below average (E[M |R] < E[M ]) for small absolute returns. As

a result, EP (x) is decreasing for small negative returns and increasing for small

positive returns, as in the data (recall the discussion in Section 2.2). Second, the

pricing kernel is considerably steeper for states in the gray-shaded region, resulting

in a steep EP (x) curve and an equity premium contribution of 80.1/100 for the

associated states. The (forward price)-to-(average payoff) ratio of an Arrow-Debreu

security that pays $1 in the gray-shaded region, our proxy for the price of tail risk,

increases to 3.13, very close to the empirical value of 3.24 (see Table II). In fact, the

entire E[M |x]/E[M ] curve strongly resembles its empirical counterpart in Figure II

(recall that E[M |x]/E[M ] = f∗/f in IID models). Third, f∗ no longer looks like

a left-shifted version of f . Arrow-Debreu forward prices significantly exceed the

securities’ expected payoffs in the far left tail, but fall below them for states to the

right of the gray-shaded region, similar to the empirical densities in Figure II. Table

II further shows that EP (x), the quantity of risk, and the price of risk for states in
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the gray-shaded region are not significantly different from the data in finite samples.

Consistent with the main channel of Model 3, Schreindorfer (2019) shows empiri-

cally that the “downside correlation” between consumption and dividend growth is

increasing in the left tail, i.e. large negative shocks are more likely to coincide.

6.2 Tail-sensitive risk preferences

Standard risk preferences restrict the relationship between the marginal utility for

shocks of different magnitudes in a way that resembles how the bivariate normal

distribution restricts the dependence between different shocks. In particular, all

models considered above assume utility functions that rely on a single risk aversion

coefficient. As such, they can only increase the marginal utility of large shocks by

simultaneously increasing the marginal utility of small shocks.

One way to overcome this tension is to assume a utility function that disentan-

gles risk attitudes towards small and large risks, such as Generalized Disappoint-

ment Aversion (GDA) (Gul 1991; Routledge and Zin 2010). GDA is an axiomatic

extension of expected utility theory that nests expected utility as a special case and

rationalizes the Allais (1979) paradox. When GDA is used to govern risk preferences

in the intertemporal utility function of Epstein and Zin (1989), the pricing kernel

in IID environments equals

Mt+1 = β̃ × e−γ∆ct+1︸ ︷︷ ︸
small risks

× (1 + θ1{∆ct+1 ≤ ln(δ) + x̃})︸ ︷︷ ︸
tail risks

. (14)

β̃ and x̃ are endogenous constants (see Schreindorfer (2019) for details). For θ = 0

(no disappointment aversion) and an elasticity of intertemporal substitution (EIS)

of 1/γ (time separable utility), the pricing kernel equals the one of Models 1, 2, and

3. For θ > 0, the “tail risks term” overweights consumption growth realizations in

the left tail. The parameter θ governs the magnitude of the disappointment penalty
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Figure VIII: Tail-sensitive risk preferences (Model 4).

and δ governs the threshold below which outcomes are considered disappointing.

To illustrate the effect of GDA on risk premia in the clearest possible way, we

consider an IID lognormal endowment and perfectly correlated shocks. The lowest

EP (x) curve in Figure VIII corresponds to Model 1 (time separable CRRA utility).

Starting with this calibration (for which θ = 0) and a disappointment threshold of

δ = 0.987, we lower γ and increase θ to keep the equity premium fixed at 8%. All

other parameters are unchanged relative to Model 1. As γ is lowered and θ is raised,

adverse consumption shocks become more disappointing and states in the gray-

shaded region become more important for the equity premium. The highest EP (x)

curve corresponds to a calibration with γ = 0 and θ = 10.64 (henceforth “Model 4”),

for which the left panel shows average state prices and payoffs. States in the gray-

shaded region coincide with a pricing kernel above 10, a steep EP (x) curve, a price

of risk of 9.935, and they account for 96.7/100 of the equity premium (see Table

II). Clearly, GDA risk preferences allow for substantially more aversion against

extreme events than standard utility functions and can therefore help rationalize

the importance of such states for the equity premium.

Two features make Model 4 very stylized. First, the left tail of the lognormal
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distribution approaches zero at a very fast rate, which implies that probability mass

in the gray-shaded region is concentrated around its right endpoint. Such states

are therefore the primary source of risk premia and the EP (x) curve rises abruptly,

rather than gradually, as in the data. This feature can be eliminated by assum-

ing endowment shocks from a left-skewed distribution that increases the relative

likelihood of returns in the far left tail. Second, the projected pricing kernel and

Arrow-Debreu forward prices have a discontinuity at the disappointment thresh-

old. This feature can be eliminated by specifying imperfectly correlated shocks to

consumption and dividends, so that returns (which reflect dividend shocks) become

gradually more likely to coincide with disappointments (which reflect consumption

shocks) when they fall further into the left tail.

6.3 Schreindorfer (2019)

Schreindorfer (2019) combines the channels of Models 3 and 4. His GDA model as-

sumes that consumption and dividends are subject to independent Gaussian shocks

and negatively exposed to a common exponential shock. In contrast to Model 3,

where large negative shocks (jumps) always coincide and small shocks (Gaussian)

never coincide, his setting implies that shocks become gradually more likely to co-

incide the more negative they are. Schreindorfer (2019) calibrates the model to

replicate the average returns and Sharpe ratios of options with different strikes, but

we find that it provides a similarly good match for our equity premium decompo-

sition. States in the gray-shaded region contribute 72/100 to the equity premium

(versus 90/100 in the data), occur with a probability of 0.008 (versus 0.011 in the

data), and coincide with a price of risk of 4.69 (versus 3.24 in the data).
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7 Last thoughts

The asset pricing literature has proposed a number of modifications to utility func-

tions and shock structures to overcome the empirical challenges of Lucas’s (1978)

consumption-based asset pricing framework. The models of Campbell and Cochrane

(1999), Bansal and Yaron (2004), and Rietz (1988) and Barro (2006, 2009) all ac-

count for the average equity premium and related asset market facts based on plau-

sible macroeconomic risks. Due to their quantitative success and economic appeal,

the same mechanisms have been adopted to understand a wide range of issues linked

to risk premia, including exchange rate movements (Verdelhan 2010; Colacito and

Croce 2011; Farhi and Gabaix 2015), the term structure of interest rates (Wachter

2006; Bansal and Shaliastovich 2013), credit spreads (Chen 2010; Bhamra et al.

2010), business cycles (Gourio 2012; Croce 2014), labor markets (Kilic and Wachter

2018; Favilukis et al. 2019), and climate change policies (Bansal et al. 2016).

We document empirically that stock market risk premia predominantly com-

pensate investors for shocks that coincide with infrequent, large, but not extremely

large negative returns. This fact is quantitatively at odds with leading calibrations

of the aforementioned theories, including those that generate a realistic quantity of

tail risk in returns.

Our evidence points to a higher price of tail risk than implied by existing models,

and we propose two ways to generate one. One option is to assume that large nega-

tive shocks to equity markets are likely to coincide with large drops in consumption,

while smaller shocks to stock prices are only weakly correlated with the real econ-

omy. We model this channel via shocks to consumption and dividends, but it could

similarly be applied to shocks to economically-important state variables, such as the

surplus consumption ratio in the habit model or conditional consumption growth

moments in the long-run risks model. Another option is to postulate a utility func-
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tion that disentangles risk attitudes towards small and large risk. We illustrate

this channel via GDA risk preferences, which are straightforward to embed into any

model with Epstein and Zin (1989) utility. We show that both mechanisms can

replicate key features of our equity premium decomposition in IID representative

agent models. An important route for future research is to investigate whether the

same mechanisms can align existing asset pricing models more closely with sources

of the equity premium, while also preserving their implications for excess volatil-

ity and the predictability of stock market returns. More broadly, we believe that

future generations of asset pricing models, representative agent or not, should pay

close attention to the composition of risk premia, in addition to their level. EP (x)

provides a tool for doing so.
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A Appendix

A.1 Data and estimation

We “clean” the option dataset by remoing observations if they (i) violate the static

no-arbitrage bounds P ≤ K/Rf or C ≤ S, (ii) have a best bid quote of zero, (iii)

have the CBOE’s error code 999 for ask quotes or 998 for bid quotes, (iv) have

non-positive bid-ask spreads, (v) have midquotes less than $0.50, (vi) are singles

(a call quote without a matching put quote or vice versa), (vii) are PM settled, or

(viii) have annualized implied volatilities (IVs) less than 2% or more than 200%.

To detect any additional “outliers”, we fit a simple linear function in maturity and

standardized moneyness (see definitions below) to IVs on each date, and remove

observations that are highly influential based on their Cook’s distance (a common

statistical metric for detecting outliers).

We use the Black and Scholes (1973) formula to convert option prices to im-

plied volatility (IV) units, fit an interpolant to them, and then map interpolated

IVs back to prices. The benefit of doing so is that IVs can easily be fit with a

parsimonious function due to their homogeneous magnitudes, whereas option prices

can not. Importantly, however, this approach does not assume the validity of Black

and Scholes’s assumptions because their formula is merely used to map back and

forth between two spaces.

For a given maturity, we parameterize IVs with the function

IV (κ) =
[
a+ b

(
ρ(κ−m) + φ(κ−m)2 +

√
(κ−m)2 + σ2

)]θ
, (A.1)

where κ = ln(K/St)

V IXt

√
T

denotes the option’s moneyness in standard deviation units

(henceforth “standardized moneyness”) and T denotes its maturity in years. For

example, a put option with κ = −2 and T = 1/2 is two standard deviations out-

of-the-money and has 6 months to maturity. The θ-exponent determines whether
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Figure IX: Comparative statics for the implied volatility parameterization. The

functional form is shown in Equation A.1; θ is set to 1.

the function applies to volatility (θ = 1) or variance (θ = 1/2) units, which in

turn affects the tail behavior of the IV curve. The remaining six parameters give

the IV (κ) function the flexibility to take on a variety of shapes, as illustrated in

Figure IX. Beyond smoothness, IV (κ) therefore imposes very little structure on the

shape of the IV curve. Equation (A.1) represents a slight generalization of the “SVI

parameterization”, a method widely used by practitioners to fit IV curves, see, e.g.

Gatheral (2006).

Because we would like to interpolate option prices in both the moneyness and

maturity dimension, we extend (A.1) in the maturity dimension by specifying linear

functions of T for the coefficients, e.g.,

a = a0 + a1T, (A.2)
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and similarly for (b, ρ,m, φ, σ). The linear functional form is chosen for its parsimony

– it results in twelve free parameters for the bivariate function IV (κ, T ) – and to

impose the economically-motivated constraint that IV (κ) changes smoothly as a

function of maturity.

For each day in the sample, we find the parameter vector θ ≡ (aj , bj , ρj ,mj , φj , σj),

j ∈ {0, 1}, by minimizing a two-part objective function, Ot(θ) = O1,t(θ) + O2,t(θ).

The first term is given by the root mean squared error between observed IVs and

the function IV (κ, T ; θ),

O1,t(θ) =

√√√√ 1

Nt

Nt∑
i=1

[IVi − IV (κi, Ti; θ)]
2, (A.3)

where Nt is the number of observations on day t. The second term penalizes pa-

rameter vectors for which the IV (κ, T ; θ)-implied density of forward state prices

does not integrate to one. To compute it, we evaluate IV (κ, T ; θ) on a fine grid

of standardized moneyness between -10 and +3 standard deviations and maturities

between 10 to 120 days, map IVs back to put prices based on the Black-Scholes

formula, and compute forward state prices for each maturity via finite differences

based on Equation (10). The penalty is set to

O2,t(θ) = 2
∑
T

×
∣∣∣∫ f∗t (κ, T ; θ)dκ− 1

∣∣∣, (A.4)

where f∗t (κ, T ; θ) are forward state prices for maturity T on day t, and we sum over

all values in the maturity grid.

We use a particle swarm algorithm to minimize Ot(θ) globally over the parameter

space and discard any set of parameters for which option prices on the grid are

not positive, monotone, and convex. We include observations of put options with

a standardized moneyness below 0.5, call options with a standardized moneyness

above -0.5, and maturities between 8 and 120 days. In-the-money options and long-
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Table II: Alternative state price estimates

R2 f∗ moments Return (in %) at which EP (x) =

mean median vol skew kurt 0.05 0.10 0.50 1.00

(A) 0.930 0.973 0.191 -1.56 10.72 -39.7 -34.1 -18.4 -11.5

(B) 0.919 0.961 0.191 -1.54 10.51 -39.6 -34.0 -17.9 -11.3

(C) 0.932 0.977 0.191 -1.57 10.85 -40.1 -34.3 -18.3 -11.2

(D) 0.886 0.930 0.189 -1.39 10.10 -39.4 -33.1 -16.1 -8.5

Statistics for alternative estimates of 30-day forward state prices. The estimates differ by

the restrictions they impose on Equation A.1: (A) θ = 1
2 , (B) θ = 1

2 , φ = 0, (C) θ = 1, and

(D) θ = 1, φ = 0.

maturity options are excluded because they have substantially larger bid-ask spreads

and trade less frequently. Contracts in the week before expiration are also excluded.

Due to its flexibility, it is not surprising that the parameterized IV surface pro-

vides a good fit to observed IVs. Outside of the observed moneyness region, however,

IV (κ, T ) is only restricted by theoretical no arbitrage constraints, and could there-

fore be sensitive to the parametric functional form we have chosen. To evaluate this

possibility, we estimate four versions of Equation (A.1) that differ in terms of their

behavior for extreme moneyness values. We consider either variance (θ = 1/2) or

volatility (θ = 1) units, and either restrict the quadratic term in Equations (A.1) to

zero (φ = 0) or not (φ 6= 0). For all four cases, Table II shows implied R2’s for the

fit to observed IVs, higher moments of the implied 30-day f∗ density, and return

thresholds at which the resulting 30-day EP (x) curve equals 0.05, 0.1, 0.5, or 1.

Clearly, specification D (volatility units, no quadratic term), for which both

“legs” of the IV curve are linear by construction, provides the worst fit. The average

R2 across the 7,304 trading days in our sample equals 0.886, whereas the median R2

equals 0.93. Specifications A-C, all of which allow for concavity in the legs of the
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Figure X: Alternative estimates of implied volatilities and EP (x).

IV curve, provide better and very similar fits: The average R2 falls between 0.919

and 0.932, whereas the median R2 falls between 0.961 and 0.977. The left panel of

Figure X further shows that the average 30-day IV curve looks nearly identical for

returns between -20% and +10% (which contains most option observations) in these

three cases, but noticeably different in both tails (which contains few observations).

Despite these differences, however, Table II and the right panel of Figure X show

that the higher moments of f∗ and the shape of the resulting EP (x) curve are

nearly identical across specifications A-C. Our main results are therefore robust to

the way IVs are extrapolated to the tails. The main part of the paper relies on the

f∗(R) estimate from specification B (variance units, no quadratic term) because it

represents the version of Equation (A.1) suggested by Gatheral (2006).

A.2 Computation

Apart from the Drechsler and Yaron (2011) model, which is high-dimensional and

solved via log-linearization, we solve all models using globally accurate numerical
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solution methods. The online appendix provides details. Based on a given model

solution, we compute f(R) via a Monte Carlo simulation. To begin, we construct

an equally-spaced grid r1, . . . , rN for returns. Denote the bin width by δ = ri+1− ri

and the ith bin midpoint by r̄i = ri+ri+1

2 . Next, simulate Rt+1 for T periods.6 The

value of the physical distribution at the i-th grid midpoint is computed as

f (r̄i) =
1

δ × T

T∑
t=1

1

{
ri <

St+1

St
≤ ri+1

}
, i = 1, ..., N − 1 (A.5)

where 1{·} is an indicator andN = 10, 000. We set the simulation length to T = 1011

periods, which reduces Monte Carlo noise to essentially zero for all models.

To find f∗(R), we compute state-contingent put option prices on the aforemen-

tioned return grid and a fine grid for each model’s state. Next, we find the state-

contingent risk-neutral density via finite differences based on Equation 10, simulate

the state for a large number of periods, and compute the average density as

f∗(r̄i) =
1

L

L∑
l=1

f∗(r̄i;Xl), i = 1, ..., N − 1 (A.6)

where Xl denotes the simulated state in period l. EP (x) is given by

EP (x) =

∑N
i=1 1 {ri ≤ x} ri(f(ri)− f∗(ri))δ∑N

j=1 rj(f(rj)− f∗(rj))δ
. (A.7)

For each model we consider, the online appendix discusses implementation de-

tails for EP (x), as well as results from the original studies that we replicated to

verify the accuracy of our numerical solutions.

6Steps for doing so are model specific, but generally involve simulating shocks, using

them to evaluate dividend growth and paths of the model’s state variable(s), using the state

variable(s) to evaluate the price-dividend ratio, and computing Rt+1 = PDt+1

PDt
e∆dt+1 .
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